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a b s t r a c t

The development of a viscoplastic flow in a solid layer of an elastoviscoplastic material on an inclined
plane is considered when loading stresses act on its free surface. It is shown that the elastoplastic boundary
starts its motion from the rigid inclined plane and, propagating through the elastic core, it can reach the
free surface of the layer. An exact solution is obtained for the dynamic problem of the retardation of
developed viscoplastic flow after the loading stresses are abruptly removed. The possibility of writing
the equation of motion for the unloading wave in terms of the displacements is pointed out. It reduces
to an inhomogeneous wave equation where the velocity of the unloading wave is found to be equal to
the velocity of the equivoluminal elastic wave. Reflection of the unloading wave from a rigid boundary
in the form of an inclined plane is also considered.

© 2009 Elsevier Ltd. All rights reserved.

The surfaces of strain discontinuities in elastoplastic media separate into loading and unloading waves. A review of papers, dealing
with the distinctive features of the propagation of such discontinuities can be found in Ref. 1. The conditions for the existence of surfaces
of strain discontinuities in media with elastic and plastic properties and the regularities in their propagation were studied later.2–6 When
the viscous properties of the medium are taken into account in the plastic flow process, no other discontinuity surfaces, apart from those
which propagate with the known velocities of elastic waves, develop;7,8 this is also recorded in experiments.2 In the case of the propagation
of unloading waves, the situation is further complicated by the fact that the discontinuity surface propagates through a viscoplastic flow
domain where the irreversible deformations cannot be considered to be small.

Here, we consider the simplest boundary value problem in the theory of large elastoviscoplastic deformations with an unloading wave.
Such a plane of stress discontinuity arises in a solid layer of an incompressible elastoviscoplastic material on an inclined plane, and the
viscoplastic flow developed in this layer is caused by the action of the loading stresses on the free surface of the layer after they are abruptly
removed. The principal difficulty in formulatiing of the corresponding boundary-value problem is associated with the fact that the plane of
stress discontinuity moves through an intensively and irreversibly deforming medium while the stresses are determined by the level and
distribution of the reversible strains. Hence, in order to determine the dependence of the stresses on the displacements and to write down
the equation of motion of the medium, it is necessary to specify the distributions of the plastic and elastic strains beyond the unloading
wave. Moreover, when writing the equation of motion in the displacements, it is also necessary to find the displacements in accordance
with the definition of reversible and irreversible strains which, as is well-known,9 is not a simple problem even in the case of small strains.
It is obvious that assuming that the material is incompressible both during the irreversible strain stage as well as the reversible strain
stage assists in overcoming the mathematical difficulties. Taking account of bulk gravitational forces is of fundamental importance for the
correct formulation of the problem.10

1. Initial relations for the strain model used

In constructing a flow theory taking account of large elastoplastic strains, it is necessary to determine the reversible and irreversible
strains, which are not measurable experimentally, as components of the overall strains following the additional assumptions in Refs 11–13.
In non-equilibrium thermodynamics, reversible and irreversible strains relate to thermodynamic parameters and their determination is
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therefore associated with the postulation of variation (transport) equations for them.14–16 One of the basic assumptions of the model
constructed15–17 is the requirement that irreversible strains in unloading processes are invariant and, also that of the thermodynamic
potential (the internal energy and free energy) is independent of the irreversible strains which enables not only the basic relations of the
model to be written in a simple form but also enables, within its limits, a number of boundary value problems concerning quasistatic
irreversible deformation with subsequent unloading to the solved.10,18,19

Here, we consider the simplest problem in the strain dynamics of an elastoviscoplastic medium with initial conditions which are
attained due to quasistatic strain. Using the approach described earlier,15,17 we specify the strain kinematics in a rectangular system of
Euler coordinates xi using the relations

(1.1)

In relations (1.1), dij are the components of the Almans Almansi strains, eij and pij are their reversible and irreversible components, D/Dt is
an objective derivative of the tensors with respect to time, written for an arbitrary tensor with the components nij, ui and �i, that is, the
components of the displacement vector and the velocity vector of the points of the medium, �p

ij
are the components of the plastic strain

rate tensor, and the non-linear component zij of the rotation tensor rij has been written out fully in Ref. 15.
As consequence of the law of conservation of energy, assuming that the thermodynamic potentials are independent of the irreversible

strain the Murnaghan formulae are

(1.2)

In relations (1.2), �ij are the components of the stress tensor, p and p1 are the additional hydrostatic pressures, W is the elastic potential
and �, b and � are constants of the material.

We will assume that the irreversible strains in the material accumulate when the stress state is attaining the loading surface which,
according to the accepted Mises maximum principle, is the plastic potential. We shall specify this surface by the Tresca yield criterion
extended to the case of viscoplastic flow:

(1.3)

In relation (1.3), �ij and �p
k

are the principal values of the stress and plastic strain rate tensors, k is the yield point and � is the coefficient
of viscosity.

The relation between the irreversible strain rates and the stresses is established by the associated plastic flow law

(1.4)

2. Quasistatic viscoplastic flow

Consider the linear motion of an elastoviscoplastic medium constituting a layer of solid material on an inclined plane and loaded on its
free surface. The coordinate axes are chosen such that the x2 axis is directed downwards along the loaded surface of the layer and the x1
axis is directed into the layer. We initially assume that the material is in equilibrium, with the boundary conditions

(2.1)

Here, u = u2(x1) is the only non-zero component of the displacement vector, h is the layer thickness, and � and � are given constants. The
constant � can be arbitrary (in particular, it can be equated to zero). The values of the constant � are limited by the conditions for a stress
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state to occur on the loading surface (1.3). If �* ≤ � < 0 (a shift down along the inclined plane), the plasticity condition is satisfied in the
plane x1 = h in the form

(2.2)

In the case when 0 < � ≤ �* (a shift upwards along the inclined plane) the plasticity condition �12|x1=0 = k is satisfied in the plane x1 = 0. The
problem is solved for the first case.

The stress-strain state parameters at the instant when plasticity condition (2.2) is satisfied are calculated by integrating the equilibrium
equations using conditions (2.1) and (2.2), and, at the same time, account is taken of the fact that the stress components are related to the
overall strain tensor components by the first formula of (1.2). We have

(2.3)

Here, � is the density of the material, g is acceleration due to gravity and 	 is the angle of inclination of the plane.
Henceforth, only the leading non-linear terms are left in relations (2.3). These relations serve as initial conditions for the subsequent

plastic flow as the loading forces increase with time

(2.4)

The function c2(t), as well as the constant �, can be arbitrary since �11 has no effect on the plastic flow. At the same time, c1(0) = �*.
From the instant t = 0, the viscoplastic flow domain is bounded by the planes m(t) ≤ x1 ≤ h and the elastic core occupies the domain

0 ≤ x1 ≤ m(t). The surface m(t) is the moving boundary of the viscoplastic flow domain. The stress-strain state parameters at any instant
t = t1 > 0 are found by integrating the equilibrium equations using boundary conditions (2.1) and (2.4) and the plasticity condition in the
form

(2.5)

The conditions for the stress components, the strain components and the derivatives ∂u/∂x1 and ∂u/∂t = � to be equal are satisfied in
the elastoplastic boundary x1 = m(t) which enable as to find the integration functions. Hence, the following relations are the solution of the
problem:

in the domain of reversible strain 0 ≤ x1 ≤ m(t)

and in the domain of viscoplastic flow m(t) ≤ x1 ≤ h

(2.6)

The value of m1 = m(t1), which determines the elastoplastic boundary and corresponds to the applied load c1(t1), is determined from
the condition for the plastic strain rates �p

12 (2.5) to be equal to zero when x1 = m1, where

(2.7)

The stresses in the two domains are determined by the relations

(2.8)

3. Unloading dynamics

Starting from a certain instant t ≥ t2 in the case of a loading c1(t) ≤ −k, viscoplastic flow of the whole of the layer of the material occurs.
We will assume that, at some subsequent instant t = t*, the load c1(t*) = −k0 is abruptly removed:

(3.1)

Hence, starting from the instant t = t*, the surface x1 = G(t–t*) moves from the plane x1 = 0 to the plane x1 = h (it is shown below that
G =

√
�/�) which singles out the unloading zone

(3.2)

from the domain of continuing plastic flow

(3.3)
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According to the transport equation for the irreversible strain tensor (1.1), under unloading �p
ij

= 0 the components of the irreversible
strain tensor change as in the case of the rigid displacement of a body. It follows from the kinematic relations

which hold in the case being considered, that the irreversible components straing p12 do not change in the unloading zone. According to
the penultimate relation of (2.6), the distribution of p12 through the layer in the plastic flow domain at an instant t ≥ t* is given by the
relation

(3.4)

Subsequently, p12 changes at each point up to the instant when the surface x1 = G(t–t*) reaches it, and, from this instant, it does not vary in
the domain (3.2). Hence, at any instant in the unloading zone (3.2), p12 is a function of only the coordinate x1 and it is time-independent.

It follows from formula (3.4) that, in the unloading zone,

(3.5)

When account is taken of the relation �12 = �(∂u/∂x1–2p12), from the equation of motion of the medium we derive the equation for
finding the displacement components

(3.6)

According to equality (3.1) and the requirement that the displacement components should be continuous on the boundary x1 = G(t–t*),
the boundary conditions for equation (3.6) are

(3.7)

The solution of Eq. (3.6) has the form

(3.8)

Using boundary conditions (3.7) for finding the functions f(
) and g(�) and returning to the initial variables, we finally obtain

(3.9)

According to (2.6) and (2.7), the relations

hold in the domain of continuing plastic flow (3.3).

4. Reflection of on unloading wave from a rigid wall

At the instant t = t3, the surface x1 = G(t–t*) reaches the fixed plane x1 = h. Consequently, starting from the instant t = t3, the surface
x1 = h–G(t–t3) moves from the plane x1 = h to the plane x1 = 0. In order to find the components of the displacement u and the stress �12, we
use solution (3.8) of Eq. (3.6), obtained earlier. The first condition of (2.1) and the condition

(4.1)

will now be the boundary conditions for this equation.
Relation (4.1) follows from formula (3.9), and it is a consequence of the continuity of the displacement components in the surface

x1 = h–G(t–t3).
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As was done earlier, using the boundary conditions to find the functions f(
) and g(�), we obtain the solution of this boundary-value
problem in the domain h–G(t–t3) ≤ x1 ≤ h in the form

Relations (3.9) are the solution in the domain 0 ≤ x1 ≤ h–G(t–t3).
The assumption that the irreversible strain tensor is invariant when the load is removed is therefore the fundamental requirement of

the model, which enables as to construct a closed solution. It is precisely this that enabled us to write down the inhomogeneous wave
equation (3.6) as a consequence of the equation of motion. In the two solutions obtained, the surfaces x1 = G(t–t*) and x1 = h–G(t–t3) are
surfaces of discontinuity in the stresses (elastic strains) and the overall deformations.
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